122 research outputs found

    Constructing Parsimonious Analytic Models for Dynamic Systems via Symbolic Regression

    Full text link
    Developing mathematical models of dynamic systems is central to many disciplines of engineering and science. Models facilitate simulations, analysis of the system's behavior, decision making and design of automatic control algorithms. Even inherently model-free control techniques such as reinforcement learning (RL) have been shown to benefit from the use of models, typically learned online. Any model construction method must address the tradeoff between the accuracy of the model and its complexity, which is difficult to strike. In this paper, we propose to employ symbolic regression (SR) to construct parsimonious process models described by analytic equations. We have equipped our method with two different state-of-the-art SR algorithms which automatically search for equations that fit the measured data: Single Node Genetic Programming (SNGP) and Multi-Gene Genetic Programming (MGGP). In addition to the standard problem formulation in the state-space domain, we show how the method can also be applied to input-output models of the NARX (nonlinear autoregressive with exogenous input) type. We present the approach on three simulated examples with up to 14-dimensional state space: an inverted pendulum, a mobile robot, and a bipedal walking robot. A comparison with deep neural networks and local linear regression shows that SR in most cases outperforms these commonly used alternative methods. We demonstrate on a real pendulum system that the analytic model found enables a RL controller to successfully perform the swing-up task, based on a model constructed from only 100 data samples

    Optical Flow From 1D Correlation: Application to a Simple Time-To-Crash Detector

    Get PDF
    In the first part of this paper we show that a new technique exploiting 1D correlation of 2D or even 1D patches between successive frames may be sufficient to compute a satisfactory estimation of the optical flow field. The algorithm is well-suited to VLSI implementations. The sparse measurements provided by the technique can be used to compute qualitative properties of the flow for a number of different visual tsks. In particular, the second part of the paper shows how to combine our 1D correlation technique with a scheme for detecting expansion or rotation ([5]) in a simple algorithm which also suggests interesting biological implications. The algorithm provides a rough estimate of time-to-crash. It was tested on real image sequences. We show its performance and compare the results to previous approaches

    Regularized Least Squares Cancer Classifiers from DNA microarray data

    Get PDF
    BACKGROUND: The advent of the technology of DNA microarrays constitutes an epochal change in the classification and discovery of different types of cancer because the information provided by DNA microarrays allows an approach to the problem of cancer analysis from a quantitative rather than qualitative point of view. Cancer classification requires well founded mathematical methods which are able to predict the status of new specimens with high significance levels starting from a limited number of data. In this paper we assess the performances of Regularized Least Squares (RLS) classifiers, originally proposed in regularization theory, by comparing them with Support Vector Machines (SVM), the state-of-the-art supervised learning technique for cancer classification by DNA microarray data. The performances of both approaches have been also investigated with respect to the number of selected genes and different gene selection strategies. RESULTS: We show that RLS classifiers have performances comparable to those of SVM classifiers as the Leave-One-Out (LOO) error evaluated on three different data sets shows. The main advantage of RLS machines is that for solving a classification problem they use a linear system of order equal to either the number of features or the number of training examples. Moreover, RLS machines allow to get an exact measure of the LOO error with just one training. CONCLUSION: RLS classifiers are a valuable alternative to SVM classifiers for the problem of cancer classification by gene expression data, due to their simplicity and low computational complexity. Moreover, RLS classifiers show generalization ability comparable to the ones of SVM classifiers also in the case the classification of new specimens involves very few gene expression levels

    Comparative study of gene set enrichment methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of high-throughput gene expression data with respect to sets of genes rather than individual genes has many advantages. A variety of methods have been developed for assessing the enrichment of sets of genes with respect to differential expression. In this paper we provide a comparative study of four of these methods: Fisher's exact test, Gene Set Enrichment Analysis (GSEA), Random-Sets (RS), and Gene List Analysis with Prediction Accuracy (GLAPA). The first three methods use associative statistics, while the fourth uses predictive statistics. We first compare all four methods on simulated data sets to verify that Fisher's exact test is markedly worse than the other three approaches. We then validate the other three methods on seven real data sets with known genetic perturbations and then compare the methods on two cancer data sets where our a priori knowledge is limited.</p> <p>Results</p> <p>The simulation study highlights that none of the three method outperforms all others consistently. GSEA and RS are able to detect weak signals of deregulation and they perform differently when genes in a gene set are both differentially up and down regulated. GLAPA is more conservative and large differences between the two phenotypes are required to allow the method to detect differential deregulation in gene sets. This is due to the fact that the enrichment statistic in GLAPA is prediction error which is a stronger criteria than classical two sample statistic as used in RS and GSEA. This was reflected in the analysis on real data sets as GSEA and RS were seen to be significant for particular gene sets while GLAPA was not, suggesting a small effect size. We find that the rank of gene set enrichment induced by GLAPA is more similar to RS than GSEA. More importantly, the rankings of the three methods share significant overlap.</p> <p>Conclusion</p> <p>The three methods considered in our study recover relevant gene sets known to be deregulated in the experimental conditions and pathologies analyzed. There are differences between the three methods and GSEA seems to be more consistent in finding enriched gene sets, although no method uniformly dominates over all data sets. Our analysis highlights the deep difference existing between associative and predictive methods for detecting enrichment and the use of both to better interpret results of pathway analysis. We close with suggestions for users of gene set methods.</p

    A comparative study of covariance selection models for the inference of gene regulatory networks

    Get PDF
    Display Omitted Three different models for inferring gene networks from microarray data are proposed.The most sensitive approach is selected by an exhaustive simulation study.The method reveals a cross-talk between the isoprenoid biosynthesis pathways in Arabidopsis thaliana.The method highlights 9 genes in HRAS signature regulated by the transcription factor RREB1. MotivationThe inference, or 'reverse-engineering', of gene regulatory networks from expression data and the description of the complex dependency structures among genes are open issues in modern molecular biology. ResultsIn this paper we compared three regularized methods of covariance selection for the inference of gene regulatory networks, developed to circumvent the problems raising when the number of observations n is smaller than the number of genes p. The examined approaches provided three alternative estimates of the inverse covariance matrix: (a) the 'PINV' method is based on the Moore-Penrose pseudoinverse, (b) the 'RCM' method performs correlation between regression residuals and (c) '?2C' method maximizes a properly regularized log-likelihood function. Our extensive simulation studies showed that ?2C outperformed the other two methods having the most predictive partial correlation estimates and the highest values of sensitivity to infer conditional dependencies between genes even when a few number of observations was available. The application of this method for inferring gene networks of the isoprenoid biosynthesis pathways in Arabidopsis thaliana allowed to enlighten a negative partial correlation coefficient between the two hubs in the two isoprenoid pathways and, more importantly, provided an evidence of cross-talk between genes in the plastidial and the cytosolic pathways. When applied to gene expression data relative to a signature of HRAS oncogene in human cell cultures, the method revealed 9 genes (p-value<0.0005) directly interacting with HRAS, sharing the same Ras-responsive binding site for the transcription factor RREB1. This result suggests that the transcriptional activation of these genes is mediated by a common transcription factor downstream of Ras signaling. AvailabilitySoftware implementing the methods in the form of Matlab scripts are available at: http://users.ba.cnr.it/issia/iesina18/CovSelModelsCodes.zip

    Measuring randomness by leave-one-out prediction error. Analysis of EEG after painful stimulation

    Get PDF
    Abstract A parametric approach, to measure randomness in time series, is presented. Time series are modelled by a kernel machine performing regularized least squares and the leave-one-out (LOO) error is used to quantify unpredictability. On analyzing simulated data sets, we find that structure in data leads to a minimum of the LOO error as the regularizing parameter is varied. We consider electroencephalographic signals from migraineurs and healthy humans, after painful stimulation and use the proposed approach to detect changes of physiological state and to find differences between the response from patients and healthy subjects. As painful stimulus causes organization of the local activity in the cortex, EEG series become more predictable after stimulation. This phenomenon is less evident in patients: the inadequate cortical response to pain in migraineurs separates patients from controls with a probability close to 0.005

    Complicated Bi-Pella Support: Acute Mitral Regurgitation and Bailout MitraClip Repair

    Get PDF
    During the last decades, the use of mechanical circulatory support devices (MCS) has increased exponentially. In this scenario, a fully percutaneous approach to biventricular cardiogenic shock has ..
    • …
    corecore